VALSE 2022-day3
报告1:基于伪标签的弱半监督学习 讲者:朱鹏飞 (天津大学) 在线伪标签训练是弱监督和半监督学习任务中增强监督信息的一种有效手段,但伪标签噪声和错误累积降低了模型的泛化性和鲁棒性。如何生成和优化无标记数据的伪标签是基于伪标签的弱监督学习的关键。 最近的相关工作通常使用变分图自动编码器(VGAE)来使节点表示服从特定的分布。尽管它们已经显示出可喜的结果,但如何引入监督信息来指导图节点的表示学习并提高聚类性能仍然是一个悬而未决的问题。针对上述问题朱教授团队提出了一种协作决策强化自我监督(CDRS)方法来解决该问题,其中伪节点分类任务与聚类任务协作以增强图节点的表示学习。本报告分享了其团队提出的自监督低秩表示、动态样本加权、协同表示学习方面的相关工作,并介绍其在图像和图数据中的应用。 报告2:预训练模型的高效迁移学习 讲者:龙明盛 (清华大学) »